3.179 \(\int \frac {(1-a^2 x^2) \tanh ^{-1}(a x)^2}{x^3} \, dx\)

Optimal. Leaf size=172 \[ -\frac {1}{2} a^2 \text {Li}_3\left (1-\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \text {Li}_3\left (\frac {2}{1-a x}-1\right )+a^2 \text {Li}_2\left (1-\frac {2}{1-a x}\right ) \tanh ^{-1}(a x)-a^2 \text {Li}_2\left (\frac {2}{1-a x}-1\right ) \tanh ^{-1}(a x)-\frac {1}{2} a^2 \log \left (1-a^2 x^2\right )+a^2 \log (x)+\frac {1}{2} a^2 \tanh ^{-1}(a x)^2-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-\frac {a \tanh ^{-1}(a x)}{x} \]

[Out]

-a*arctanh(a*x)/x+1/2*a^2*arctanh(a*x)^2-1/2*arctanh(a*x)^2/x^2+2*a^2*arctanh(a*x)^2*arctanh(-1+2/(-a*x+1))+a^
2*ln(x)-1/2*a^2*ln(-a^2*x^2+1)+a^2*arctanh(a*x)*polylog(2,1-2/(-a*x+1))-a^2*arctanh(a*x)*polylog(2,-1+2/(-a*x+
1))-1/2*a^2*polylog(3,1-2/(-a*x+1))+1/2*a^2*polylog(3,-1+2/(-a*x+1))

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {6014, 5916, 5982, 266, 36, 29, 31, 5948, 5914, 6052, 6058, 6610} \[ -\frac {1}{2} a^2 \text {PolyLog}\left (3,1-\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \text {PolyLog}\left (3,\frac {2}{1-a x}-1\right )+a^2 \tanh ^{-1}(a x) \text {PolyLog}\left (2,1-\frac {2}{1-a x}\right )-a^2 \tanh ^{-1}(a x) \text {PolyLog}\left (2,\frac {2}{1-a x}-1\right )-\frac {1}{2} a^2 \log \left (1-a^2 x^2\right )+a^2 \log (x)+\frac {1}{2} a^2 \tanh ^{-1}(a x)^2-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-\frac {a \tanh ^{-1}(a x)}{x} \]

Antiderivative was successfully verified.

[In]

Int[((1 - a^2*x^2)*ArcTanh[a*x]^2)/x^3,x]

[Out]

-((a*ArcTanh[a*x])/x) + (a^2*ArcTanh[a*x]^2)/2 - ArcTanh[a*x]^2/(2*x^2) - 2*a^2*ArcTanh[a*x]^2*ArcTanh[1 - 2/(
1 - a*x)] + a^2*Log[x] - (a^2*Log[1 - a^2*x^2])/2 + a^2*ArcTanh[a*x]*PolyLog[2, 1 - 2/(1 - a*x)] - a^2*ArcTanh
[a*x]*PolyLog[2, -1 + 2/(1 - a*x)] - (a^2*PolyLog[3, 1 - 2/(1 - a*x)])/2 + (a^2*PolyLog[3, -1 + 2/(1 - a*x)])/
2

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 5914

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1
 - c*x)], x] - Dist[2*b*c*p, Int[((a + b*ArcTanh[c*x])^(p - 1)*ArcTanh[1 - 2/(1 - c*x)])/(1 - c^2*x^2), x], x]
 /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]

Rule 5916

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcT
anh[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1))/(1 -
 c^2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 5948

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 5982

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/d
, Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x], x] - Dist[e/(d*f^2), Int[((f*x)^(m + 2)*(a + b*ArcTanh[c*x])^p)/(d +
 e*x^2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]

Rule 6014

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Dist
[d, Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] - Dist[(c^2*d)/f^2, Int[(f*x)^(m + 2)*(d +
e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[q
, 0] && IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))

Rule 6052

Int[(ArcTanh[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/2, Int[
(Log[1 + u]*(a + b*ArcTanh[c*x])^p)/(d + e*x^2), x], x] - Dist[1/2, Int[(Log[1 - u]*(a + b*ArcTanh[c*x])^p)/(d
 + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x
))^2, 0]

Rule 6058

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Simp[((a + b*ArcT
anh[c*x])^p*PolyLog[2, 1 - u])/(2*c*d), x] + Dist[(b*p)/2, Int[((a + b*ArcTanh[c*x])^(p - 1)*PolyLog[2, 1 - u]
)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 -
2/(1 - c*x))^2, 0]

Rule 6610

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {\left (1-a^2 x^2\right ) \tanh ^{-1}(a x)^2}{x^3} \, dx &=-\left (a^2 \int \frac {\tanh ^{-1}(a x)^2}{x} \, dx\right )+\int \frac {\tanh ^{-1}(a x)^2}{x^3} \, dx\\ &=-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a \int \frac {\tanh ^{-1}(a x)}{x^2 \left (1-a^2 x^2\right )} \, dx+\left (4 a^3\right ) \int \frac {\tanh ^{-1}(a x) \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx\\ &=-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a \int \frac {\tanh ^{-1}(a x)}{x^2} \, dx+a^3 \int \frac {\tanh ^{-1}(a x)}{1-a^2 x^2} \, dx-\left (2 a^3\right ) \int \frac {\tanh ^{-1}(a x) \log \left (\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx+\left (2 a^3\right ) \int \frac {\tanh ^{-1}(a x) \log \left (2-\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx\\ &=-\frac {a \tanh ^{-1}(a x)}{x}+\frac {1}{2} a^2 \tanh ^{-1}(a x)^2-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a^2 \tanh ^{-1}(a x) \text {Li}_2\left (1-\frac {2}{1-a x}\right )-a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1-a x}\right )+a^2 \int \frac {1}{x \left (1-a^2 x^2\right )} \, dx-a^3 \int \frac {\text {Li}_2\left (1-\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx+a^3 \int \frac {\text {Li}_2\left (-1+\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx\\ &=-\frac {a \tanh ^{-1}(a x)}{x}+\frac {1}{2} a^2 \tanh ^{-1}(a x)^2-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a^2 \tanh ^{-1}(a x) \text {Li}_2\left (1-\frac {2}{1-a x}\right )-a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1-a x}\right )-\frac {1}{2} a^2 \text {Li}_3\left (1-\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \text {Li}_3\left (-1+\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \operatorname {Subst}\left (\int \frac {1}{x \left (1-a^2 x\right )} \, dx,x,x^2\right )\\ &=-\frac {a \tanh ^{-1}(a x)}{x}+\frac {1}{2} a^2 \tanh ^{-1}(a x)^2-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a^2 \tanh ^{-1}(a x) \text {Li}_2\left (1-\frac {2}{1-a x}\right )-a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1-a x}\right )-\frac {1}{2} a^2 \text {Li}_3\left (1-\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \text {Li}_3\left (-1+\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,x^2\right )+\frac {1}{2} a^4 \operatorname {Subst}\left (\int \frac {1}{1-a^2 x} \, dx,x,x^2\right )\\ &=-\frac {a \tanh ^{-1}(a x)}{x}+\frac {1}{2} a^2 \tanh ^{-1}(a x)^2-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a^2 \log (x)-\frac {1}{2} a^2 \log \left (1-a^2 x^2\right )+a^2 \tanh ^{-1}(a x) \text {Li}_2\left (1-\frac {2}{1-a x}\right )-a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1-a x}\right )-\frac {1}{2} a^2 \text {Li}_3\left (1-\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \text {Li}_3\left (-1+\frac {2}{1-a x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 174, normalized size = 1.01 \[ \frac {1}{2} a^2 \text {Li}_3\left (\frac {-a x-1}{a x-1}\right )-\frac {1}{2} a^2 \text {Li}_3\left (\frac {a x+1}{a x-1}\right )-a^2 \text {Li}_2\left (\frac {-a x-1}{a x-1}\right ) \tanh ^{-1}(a x)+a^2 \text {Li}_2\left (\frac {a x+1}{a x-1}\right ) \tanh ^{-1}(a x)-\frac {1}{2} a^2 \log \left (1-a^2 x^2\right )+\frac {\left (a^2 x^2-1\right ) \tanh ^{-1}(a x)^2}{2 x^2}+a^2 \log (x)-2 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )-\frac {a \tanh ^{-1}(a x)}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - a^2*x^2)*ArcTanh[a*x]^2)/x^3,x]

[Out]

-((a*ArcTanh[a*x])/x) + ((-1 + a^2*x^2)*ArcTanh[a*x]^2)/(2*x^2) - 2*a^2*ArcTanh[a*x]^2*ArcTanh[1 - 2/(1 - a*x)
] + a^2*Log[x] - (a^2*Log[1 - a^2*x^2])/2 - a^2*ArcTanh[a*x]*PolyLog[2, (-1 - a*x)/(-1 + a*x)] + a^2*ArcTanh[a
*x]*PolyLog[2, (1 + a*x)/(-1 + a*x)] + (a^2*PolyLog[3, (-1 - a*x)/(-1 + a*x)])/2 - (a^2*PolyLog[3, (1 + a*x)/(
-1 + a*x)])/2

________________________________________________________________________________________

fricas [F]  time = 0.73, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (a^{2} x^{2} - 1\right )} \operatorname {artanh}\left (a x\right )^{2}}{x^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)^2/x^3,x, algorithm="fricas")

[Out]

integral(-(a^2*x^2 - 1)*arctanh(a*x)^2/x^3, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {{\left (a^{2} x^{2} - 1\right )} \operatorname {artanh}\left (a x\right )^{2}}{x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)^2/x^3,x, algorithm="giac")

[Out]

integrate(-(a^2*x^2 - 1)*arctanh(a*x)^2/x^3, x)

________________________________________________________________________________________

maple [C]  time = 1.69, size = 741, normalized size = 4.31 \[ -a^{2} \arctanh \left (a x \right )^{2} \ln \left (a x \right )-\frac {\arctanh \left (a x \right )^{2}}{2 x^{2}}+\frac {a^{2} \arctanh \left (a x \right )^{2}}{2}-\frac {i a^{2} \arctanh \left (a x \right )^{2} \pi \,\mathrm {csgn}\left (i \left (\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}-1\right )\right ) \mathrm {csgn}\left (\frac {i}{1+\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}-1\right )}{1+\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}}\right )}{2}+a^{2} \ln \left (1+\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )-a^{2} \arctanh \left (a x \right )-\frac {a \arctanh \left (a x \right )}{x}+a^{2} \ln \left (\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}-1\right )-\frac {i a^{2} \arctanh \left (a x \right )^{2} \pi \mathrm {csgn}\left (\frac {i \left (\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}-1\right )}{1+\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}}\right )^{3}}{2}+\frac {i a^{2} \arctanh \left (a x \right )^{2} \pi \,\mathrm {csgn}\left (\frac {i}{1+\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}-1\right )}{1+\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}}\right )^{2}}{2}+\frac {i a^{2} \arctanh \left (a x \right )^{2} \pi \,\mathrm {csgn}\left (i \left (\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}-1\right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}-1\right )}{1+\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}}\right )^{2}}{2}+a^{2} \arctanh \left (a x \right )^{2} \ln \left (\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}-1\right )-a^{2} \arctanh \left (a x \right )^{2} \ln \left (1-\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )-2 a^{2} \arctanh \left (a x \right ) \polylog \left (2, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )+2 a^{2} \polylog \left (3, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )-a^{2} \arctanh \left (a x \right )^{2} \ln \left (1+\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )-2 a^{2} \arctanh \left (a x \right ) \polylog \left (2, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )+2 a^{2} \polylog \left (3, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )+a^{2} \arctanh \left (a x \right ) \polylog \left (2, -\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}\right )-\frac {a^{2} \polylog \left (3, -\frac {\left (a x +1\right )^{2}}{-a^{2} x^{2}+1}\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)*arctanh(a*x)^2/x^3,x)

[Out]

-a^2*arctanh(a*x)^2*ln(a*x)-1/2*arctanh(a*x)^2/x^2+1/2*a^2*arctanh(a*x)^2-1/2*I*a^2*arctanh(a*x)^2*Pi*csgn(I*(
(a*x+1)^2/(-a^2*x^2+1)-1))*csgn(I/(1+(a*x+1)^2/(-a^2*x^2+1)))*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1)/(1+(a*x+1)^2/(
-a^2*x^2+1)))+a^2*ln(1+(a*x+1)/(-a^2*x^2+1)^(1/2))-a^2*arctanh(a*x)-a*arctanh(a*x)/x+a^2*ln((a*x+1)/(-a^2*x^2+
1)^(1/2)-1)-1/2*I*a^2*arctanh(a*x)^2*Pi*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1)/(1+(a*x+1)^2/(-a^2*x^2+1)))^3+1/2*I*
a^2*arctanh(a*x)^2*Pi*csgn(I/(1+(a*x+1)^2/(-a^2*x^2+1)))*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1)/(1+(a*x+1)^2/(-a^2*
x^2+1)))^2+1/2*I*a^2*arctanh(a*x)^2*Pi*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1))*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1)/(1
+(a*x+1)^2/(-a^2*x^2+1)))^2+a^2*arctanh(a*x)^2*ln((a*x+1)^2/(-a^2*x^2+1)-1)-a^2*arctanh(a*x)^2*ln(1-(a*x+1)/(-
a^2*x^2+1)^(1/2))-2*a^2*arctanh(a*x)*polylog(2,(a*x+1)/(-a^2*x^2+1)^(1/2))+2*a^2*polylog(3,(a*x+1)/(-a^2*x^2+1
)^(1/2))-a^2*arctanh(a*x)^2*ln(1+(a*x+1)/(-a^2*x^2+1)^(1/2))-2*a^2*arctanh(a*x)*polylog(2,-(a*x+1)/(-a^2*x^2+1
)^(1/2))+2*a^2*polylog(3,-(a*x+1)/(-a^2*x^2+1)^(1/2))+a^2*arctanh(a*x)*polylog(2,-(a*x+1)^2/(-a^2*x^2+1))-1/2*
a^2*polylog(3,-(a*x+1)^2/(-a^2*x^2+1))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {\log \left (-a x + 1\right )^{2}}{8 \, x^{2}} + \frac {1}{4} \, \int -\frac {{\left (a^{3} x^{3} - a^{2} x^{2} - a x + 1\right )} \log \left (a x + 1\right )^{2} - {\left (a x + 2 \, {\left (a^{3} x^{3} - a^{2} x^{2} - a x + 1\right )} \log \left (a x + 1\right )\right )} \log \left (-a x + 1\right )}{a x^{4} - x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)*arctanh(a*x)^2/x^3,x, algorithm="maxima")

[Out]

-1/8*log(-a*x + 1)^2/x^2 + 1/4*integrate(-((a^3*x^3 - a^2*x^2 - a*x + 1)*log(a*x + 1)^2 - (a*x + 2*(a^3*x^3 -
a^2*x^2 - a*x + 1)*log(a*x + 1))*log(-a*x + 1))/(a*x^4 - x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ -\int \frac {{\mathrm {atanh}\left (a\,x\right )}^2\,\left (a^2\,x^2-1\right )}{x^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(atanh(a*x)^2*(a^2*x^2 - 1))/x^3,x)

[Out]

-int((atanh(a*x)^2*(a^2*x^2 - 1))/x^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \left (- \frac {\operatorname {atanh}^{2}{\left (a x \right )}}{x^{3}}\right )\, dx - \int \frac {a^{2} \operatorname {atanh}^{2}{\left (a x \right )}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)*atanh(a*x)**2/x**3,x)

[Out]

-Integral(-atanh(a*x)**2/x**3, x) - Integral(a**2*atanh(a*x)**2/x, x)

________________________________________________________________________________________